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Outline

• Overview
• Description of CRP Simulation Problem
• Using PETSc and SLEPc for Application to CRP
• Computations for Sparse Matrices
•  Results for Banded Preconditioning
• Future Directions
• Tensor Matrix Multiplication
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Chemical Dynamics Theory
3 angles, 3 stretches
6 degrees of freedom
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Chemical Dynamics Theory
• Reaction rates are related to

- Cumulative Reaction Probability (CRP), N(E)
N(E) = 4 Tr [ εr

1/2 G(E)† εp G(E) εr
1/2 ]

• Where Tr is the trace of the matrix, † is the adjoint, εr
 and εp are the

absorbing potential in the reactant and product regions.
• εr

  + εp  = ε, the given total absorbing potential.
The Green’s functions have the form:

G(E) = (E + iε - H)-1 , where   i imaginary and H is the Hamiltonian.

We need to solve two linear systems (at each iteration):

(E + iε - H) y = x and  it’s adjoint where x is known.

This system is solved via GMRES with preconditioning methods (initially
diagonal scaling).
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Hamiltonian Sparsity Pattern

• Sparsity for d=2 and d>2
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Non-zero Storage for Green’s Matrix
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Eigenvalues vs. Total Energy
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Performance vs. Processors
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Banded Single-Processor Approach

• Compare diagonal and banded
preconditioner in terms of reducing total
iteration count and cost

• Compare iterative methods (Davidson,
GMRES) to benchmark PETSc results

• Evaluate relative cost of banded operations
with sparse-matrix approach in PETSc
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Results and Future Work

• Developing global and block orthogonal
(W. Poirier)  preconditioning methods

• Use SLEPc for Lanczos iteration and
tensor products for efficient matrix-vector
multiplies

• Use NLCF IBM BGL to solve 10 DOF
problems

! 
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Tensor Matrix Vector Product

• Operator comes from the tensor product of a dense
matrix with the identity matrix

• Ax, Ay, Az are one directional operators (dense)
• v and w are vectors of size n3

Avw =

xyz AIIIAIIIAA !!+!!+!!=
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Two Ways

• Build the large sparse matrix
- Large sparse matrix of size (n3 x n3 for 3D case)
- Slow memory bandwidth limited performance

• Just evaluate the action of A on v (without
explicitly forming A)
- Done as dense matrix-matrix multiplication
- Very efficient implementation
- Huge savings in memory
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Performance Issues for Sparse Matrix Vector Product

• Little data reuse
• High ratio of load/store to

instructions/floating-point ops
• Stalling of multiple load/store functional

units on the same cache line
• Low available memory bandwidth
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Sparse Matrix Vector Algorithm: A General
Form

for every row, i {
   fetch ia(i+1)
   for j = ia(i) to ia(i + 1)  {    // loop over the non-zeros of the

row
        fetch ja(j), a(j), x1(ja(j)), ..…xN(ja(j))
        do N fmadd (floating multiply add)
    }
   Store y1(i) ..…yN(i)
 }
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Estimating the Memory Bandwidth Limitation

Assumptions

• Perfect Cache (only  compulsory misses; no overhead)
• No memory latency
• Unlimited number of loads and stores per cycle

Data Volume (AIJ Format)

m*sizeof(int) + N*(m+n)*sizeof(double)
 // ia, N input (size n) and output (size m) vectors

+ Nnz* (sizeof(int) + sizeof(double))
// ja, and a arrays

 =  4*(m+nnz)  +  8*(N*(m+n)+ Nnz)
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• Number of Floating-Point Multiply Add  (fmadd) Ops = N*nz
• For square matrices,

 (Since Nnz >> n, Bytes transferred / fmadd  ~12/N)

• Similarly, for Block AIJ (BAIJ) format

Estimating the Memory Bandwidth Limitation
(Contd.)
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Realistic Measures of  Peak Performance
Sparse Matrix Vector Product

One vector, matrix size, m = 90,708, nonzero entries nz = 5,047,120
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Second Choice: Dense Matrix-Matrix Multiplication

• We just need to store the small dense
matrices of size nxn
- for 3 dimensions memory needed is 3n2

- Good ratio of flops to bytes: O(n4) operations O(n3)
doubles

- Gets better for higher dimensions
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Evaluating the Tensor Product Terms

• Type 1

• Type 2

• Type 3

- Loop over Type 2 for i = 1, p

[ ] [ ]
nxmnxnnmnnm

VAvAI =! )(

[ ] [ ] T

nxnnmxnmnmn
AVvIA =! )(

mnmnp vIAI )( !!
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Performance of Tensor Matrix-Vector
Multiplication – 3D case

 (Intel Madison Processor 1.5 GHz, 6 Gflops/s Peak, 4 GB Memory)
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Performance of Tensor Matrix-Vector Multiplication –
Fixed Mesh Points (n=7)

 (Intel Madison Processor 1.5 GHz, 6 Gflops/s Peak, 4 GB Memory)
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Performance of Tensor Matrix-Vector Multiplication
–Long Reaction Co-ordinate

(51 points along reaction path and 7 points in other dimensions)
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Conclusions and Future Work

• Very efficient implementation
- Sparse matvecs take about 80% of execution time
- We expect that tensor product implementation can

improve the performance by a factor of three to five
• Possible to solve much larger problems

because of huge savings in memory
requirement

• Parallel implementation
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